

STATECZNOŚĆ I STANY GRANICZNE ŚCISKANYCH CIENKOŚCIENNYCH PROFILI KOMPOZYTOWYCH

Plan prezentacji

Geneza tematu

Cel i teza pracy

Przedmiot oraz metodyka badań

> Wyniki

Podsumowanie

Geneza tematu

Rys. 1. Charakterystyka cienkościennych konstrukcji – obiektu rzeczywistego i idealnego: a) siła-odkształcenie, b) siła-ugięcie [1]

Płatne ze środków Ministerstwa Nauki i Szkolnictwa Wyższego na podstawie umowy nr 030/RID/2018/19 z dnia 19.12.2018 r.

Geneza tematu

Przykład zastosowania cienkościennych struktur kompozytowych: Boeing 787 Dreamliner

Cel i teza pracy

Celem pracy jest analiza stanów granicznych oraz opis zjawiska zniszczenia ściskanych cienkościennych słupów kompozytowych o przekroju omegowym, wykonanych z kompozytu węglowoepoksydowego.

Postawiono tezę, że możliwy jest opis mechanizmów zniszczenia cienkościennych struktur kompozytowych, z wykorzystaniem modeli numerycznych zweryfikowanych doświadczalnie.

Odpowiedni dobór konfiguracji warstw laminatu może mieć istotny wpływ na stateczność i nośność ściskanych cienkościennych słupów kompozytowych.

Przedmiot badań

Rys. 4. Graficzna prezentacja przykładowej konfiguracji warstw laminatu [0/90/0/90]_s

Tab. 1. Oznaczenie konfiguracji warstw kompozytu

Oznaczenie modelu	Konfiguracja Warstw
O1 (2 próbki)	[0/-45/45/90] _s
O2 (1 próbka)	[90/-45/45/0] _s
O3 (3 próbki)	[0/90/0/90] _s

Tab. 2. Właściwości wytrzymałościowe kompozytu węglowo-epoksydowego

Wytrzymałość na rozciąganie MPa		Moduł Young'a MPa		Współczynnik Poisson'a	Wytrzymałość na ścinanie MPa	Moduł Kirchhoff'a MPa	Wytrzymałość na ściskanie MPa	
0°	90°	$E_1(0^{\circ})$	$E_2(90^{\circ})$	$V_{12}(0^{\circ})$	$\pm 45^{\circ}$	$G_{12} (\pm 45^{\circ})$	0°	90°
1867	26	131700	6360	0,32	100	4180	1531	214

Metodyka badań-testy doświadczalne

Badania doświadczalne zrealizowano w Katedrze Mechaniki Stosowanej na maszynie wytrzymałościowej Zwick Z100.

Rys. 5. Stanowisko do badań eksperymentalnych

Metodyka badań-stan krytyczny

Metodyka badań-stan krytyczny

W ramach doświadczalnej analizy stanu krytycznego możliwe było wyznaczenie obciążeń krytycznych, przy których konstrukcja traci stateczność [2]:

- Metoda Koiter'a [3, 4]
- **Metoda P-w²** [5]
- Metoda P-w³ [5]

Rys. 7. Graficzna prezentacja wyznaczania obciążenia krytycznego na podstawie charakterystyki doświadczalnej.

Metodyka badań-stan pokrytyczny

Metodyka badań-stan graniczny

Badania doświadczalne – Zniszczenie konstrukcji – Badania numeryczne – MES (progresywna analiza zniszczenia)

dwie metody badawcze:

• MEA

• Pomiar odkształceń

Proces ewolucji uszkodzenia zrealizowano z wykorzystaniem progresywnego modelu zniszczenia (kryterium energetyczne).

Wyniki-stan krytyczny

Przedstawione rezultaty badawcze stanu krytycznego dotyczą przykładowej próbki o konfiguracji ułożenia warstw O3:**[0/90/0/90]s**

Rys. 12. Doświadczalnie wyznaczone charakterystyki obciążenie - odkształcenie: a) próba pierwsza, b) próba druga, c) próba trzecia

Rys. 13. Aproksymacja pokrytycznej ścieżki równowagi struktury na podstawie metody Koiter'a: a) próba pierwsza, b) próba druga, c) próba trzecia

Rys. 14. Aproksymacja pokrytycznej ścieżki równowagi struktury na podstawie metody P- w_c^2 : a) próba pierwsza, b) próba druga, c) próba trzecia

15

16

Rys. 16. Utrata stateczności konstrukcji – wynik obliczeń numerycznych (pierwsza postać utraty stateczności): a) model o konfiguracji O1, b) model o konfiguracji O2, c) model o konfiguracji O3

Wyniki-stan krytyczny (podsumowanie)

Tab. 3. Zestawienie wartości obciążeń krytycznych wyznaczonych w badaniach doświadczalnych oraz obliczeniach MES

			Koiter	MES/Koit er	R ²	P-w ²	MES/P-w ²	R ²	P-w ³	MES/P-w ³	R ²	MES	metoda Koiter'a wykazała
Układ	Próbka	Próba	N	%		N	%		Ν	%		N	naiwieksza
		1	7154,3	3,97	0,99	7561,2	9,14	0,96	7689,1	10,65	0,97		zbieżność wyników
	1	2	7065,7	2,77	0,99	7437,1	7,62	0,97	7577,4	9,33	0,98	(970.2	
01		3	6978,8	1,56	0,98	7355,5	6,60	0,97	7491,3	8,29	0,98		
01		1	7099,6	3,23	0,99	7501,2	8,41	0,97	7623,4	9,88	0,96	0070,2	MES, gdzie roznica
	2	2	7023,8	2,19	0,98	7444,7	7,72	0,98	7521,2	8,66	0,96		wyników nie
		3	6943,7	1,06	0,98	7313,8	6,07	0,98	7448,9	7,77	0,97		przekraczała 6,5 %
		1	7376,1	6,41	0,97	7634,6	9,58	0,98	7773,2	11,19	0,99		
O2	1	2	7303,6	5,48	0,98	7538,4	8,42	0,98	7672,8	10,03	0,98	6903,4	
		3	7142,6	3,35	0,98	7388,6	6,57	0,98	7500,2	7,96	0,98		
		1	7195,8	4,39	0,99	7780	11,57	0,97	8065,9	14,70	0,95		maksymaina roznica
	1	2	7006,8	1,81	1,00	7273,7	5,41	1,00	7521,5	8,53	0,97		wyników
		3	6905,2	0,36	1,00	7132,9	3,55	0,99	7454,4	7,71	0,96		otrzymanych
		1	6978,7	1,41	0,99	7321,8	6,03	0,97	8085	14,90	1,00		w badaniach
O3	2	2	6897,7	0,26	0,99	7411,8	7,18	0,97	7980,6	13,79	1,00	6880	doświadczalnych
		3	6897,7	0,26	0,99	7461,8	7,80	0,97	7846	12,31	1,00		(metoda P-w ³) oraz
		1	7268,8	5,35	1,00	7769,2	11,45	0,97	8086,3	14,92	0,95		obliczeniach MES.
	3	2	7005,9	1,80	0,99	7639,6	9,94	0,97	8021,2	14,23	0,95		wynosi około 15 %
		3	6911,3	0,45	0,99	7550,4	8,88	0,96	8007,7	14,08	0,95		
													10

Wyniki-stan pokrytyczny

Występowanie lokalnych sygnałów emisji akustycznej w ramach stanu pokrytycznego, umożliwia wyznaczenie wartości obciążenia inicjującego uszkodzenie pierwszej warstwy kompozytu.

Rys. 17. Zależność siły ściskającej i parametrów MEA w czasie rzeczywistym – próbka 1 (O3): a) liczba zdarzeń, b) energia.

D D AND AND A STATE

Płatne ze środków Ministerstwa Nauki i Szkolnictwa Wyższego na podstawie umowy nr 030/RID/2018/19 z dnia 19.12.2018 r.

Wyniki-stan pokrytyczny

a) TSAIW, b) TSAIH, c) AZZIT, d) MSTRS, e) HSNMTCRT.

Wyniki-stan pokrytyczny (podsumowanie)

		MEA	MES	MES/ME		
		1011277		А		maksymal
Układ	Próbka	Ν	Ν	%		wyników o w bad
01	1	10606	0570	9,68		doświadcza
	2	10638	9579	9,95		obliczeniac
O2	1	5334	4852	9,04		przekracza świadczy o
	1	15266		8,08		zbieżności
03	2	14613	14032	3,98		
	3	15031		6,65		
	Układ O1 O2 O3	Układ Próbka $\begin{array}{c} 01 \\ \hline 2 \\ 02 \\ 1 \\ 03 \\ 2 \\ 3 \\ \end{array}$	MEA Układ Próbka N O1 1 10606 O1 2 10638 O2 1 5334 O3 2 14613 3 15031	MEAMESUkładPróbkaN 01 10606 2 10638 02 1 1 5334 03 2 1 15266 2 14613 1 15031	MEAMESMES/ME AUkładPróbkaNN% $O1$ 11060695799,68 $O1$ 21063895799,968 $O2$ 1533448529,04 $O2$ 1152668,08 $O3$ 214613140323,98 3 150316,65	MEAMESMES/ME AUkładPróbkaNNO1110606 9579 9,68O121063895799,968O21533448529,04O3214613140323,98O3214613140323,98

maksymalna różnica wyników otrzymanych w badaniach doświadczalnych oraz obliczeniach MES nie przekracza 10% - co świadczy o wysokiej zbieżności rezultatów

Tab. 4. Wartości obciążeń inicjujących uszkodzenie kompozytu

Wyniki-stan graniczny

Rys. 19. Porównanie wyników stanu granicznego przykładowej konstrukcji (O3): a) pomiar odkształceń, b) pomiar parametrów MEA, c) wynik obliczeń MES.

Rys. 20. Porównanie wyników stanu granicznego konstrukcji (O1): obliczenia MES (mapa DAMAGESHR) – badania doświadczalne

Rys. 21. Porównanie wyników stanu granicznego konstrukcji (O2): obliczenia MES (mapa DAMAGESHR) – badania doświadczalne

Wyniki-stan graniczny

Rys. 22. *Porównanie wyników stanu granicznego konstrukcji (O3): obliczenia MES (mapa DAMAGESHR) – badania doświadczalne*

Wyniki-stan graniczny (podsumowanie)

		MEA	EKSP	MES					
Słup	Próbka	N	Ν	N	Tab. 5. Wartości obciążeń niszczących				
01	1	20906,9	20891,1	20020 7					
	2	20165,6	20138,9	20020,7	maksymalna różnica				
O2	1	18734,4	18697,2	19723,1	wyników otrzymanych				
	1	22090,6	22077,8		w badaniach doświadczalnych oraz				
03	2	19712,5	19672,9	23217,7	obliczeniach MES				
	3	21006,3	20989,9		wynosi około 15 %				
		15,2 %	15,3 %	15,1 %					
			•						

wpływ układu warstw kompozytu na zniszczenie badanych słupów, wynosi niewiele ponad 15 % (maksymalna różnica)

Wnioski

- Do oceny wartości obciążenia krytycznego konstrukcji rzeczywistej, niezbędne jest wykorzystanie kilku niezależnych metod aproksymacyjnych. Pozwala to na dobór właściwej metody oceny, w zależności od analizowanych próbek.
- Analizy numeryczne wykorzystujące inicjacyjne kryteria uszkodzenia, umożliwiają określenie wartości obciążeń oraz lokalizację obszarów rozpoczynających zniszczenie laminatu. Zostało to pozytywnie zweryfikowane wynikami pomiarów MEA.
- Wykorzystanie w obliczeniach numerycznych progresywnej analizy zniszczenia, umożliwia oszacowanie obciążenia niszczącego, przy którym konstrukcja traci nośność oraz przeprowadzenie szczegółowego opisu mechanizmów zniszczenia materiału kompozytowego.
- Wykazano, iż możliwe jest opracowanie numerycznego modelu, uwzgledniającego opis ewolucji uszkodzenia materiału kompozytowego, który zweryfikowano wynikami badań doświadczalnych, co potwierdziło słuszność postawionej tezy.

Publikacje wykorzystane w prezentacji

1. Rhodes J, Zaras J. *Determination of critical loads by experimental methods*, chapter. In: Kołakowski Z, Kowal-Michalska K, editors. Statics, dynamics and stability of structural elements and systems. Lodz: Lodz University of Technology, a series of monographs; 2012. p.477–99.

2. Paszkiewicz M., Kubiak T.: *Selected problems concerning determination of the buckling load of channel section beams and columns*. Thin-Walled Structures, vol. 93, 2015, p.112-121.

3. Van der Heijden AMA.: W.T. Koiter's Elastic Stability of Solids and Structured. Cambridge University Press, 2009.

4. Koiter WT.: *Elastic stability and post-buckling behaviour*. In: Proceedings of the Symposium on Nonlinear Problems, Univ. of Wisconsin Press, Wisconsin, 1963.

5. Venkataramaiah KR, Roorda J.: *Analysis of local plate buckling experimental data*. Sixth International Specialty Conference on Cold-Formed Steel Structures (1982: November 16-17; St. Louis, Missouri), Missouri S&T (formerly the University of Missouri - Rolla, 45-74, (1982).

6. Tsai SW., Wu EM.: A general theory of strength for anisotropic materials. Journal of Composite Materials, vol. 5, no 1, 1971, p.58–80.

7. Hashin Z.: Failure Criteria for Unidirectional Fiber Composites. Journal of Applied Mechanics, t. 47, June 1980, p. 329-334.

8. Rozylo P, Teter A, Debski H, Wysmulski P, Falkowicz K. *Experimental and numerical study of the buckling of composite profiles with open cross section under axial compression*. Appl Compos Mater 2017, vol. 24, p.1251–64.

Płatne ze środków Ministerstwa Nauki i Szkolnictwa Wyższego na podstawie umowy nr 030/RID/2018/19 z dnia 19.12.2018 r.

DZIĘKUJĘ ZA UWAGĘ !!!

Stateczność i stany graniczne ściskanych cienkościennych profili kompozytowych

POLITECHNIKA LUBELSKA Katedra Podstaw Konstrukcji Maszyn i Mechatroniki dr inż. Patryk Różyło

Projekt " Politechnika Lubelska – Regionalna Inicjatywa Doskonałości" – finansowany ze środków Ministerstwa Nauki i Szkolnictwa Wyższego

Ministerstwo Nauki i Szkolnictwa Wyższego

